## РТУТНЫЕ ТЕРМОМЕТРЫ: опасность для окружающей среды

Е.П. Янин, канд. геол.-мин. наук ГЕОХИ им. В.И. Вернадского РАН

На промышленных предприятиях используется значительное количество ртутьсодержащих приборов, нуждающихся в обязательной утилизации после выхода их из строя.

тутные термометры представляют собой удобные приборы для измерения температуры, действие которых основано на изменении физических свойств металлической ртути, используемой в качестве термометрической жидкости. В России самым распространенным является медицинский термометр отечественного производства, содержащий 2 г ртути (с 2001 г. - 1,85 г). Содержание ртути в метеорологических, лабораторных, технических, электроконтактных и специальных термометрах составляет от 1,4 до 48 г. В последнее время на российский рынок ежегодно поступает 8-10 млн ртутных термометров отечественного производства (более 90% из них составляют медицинские), а также 1-1,5 млн термометров из Китая и других азиатских стран, куда были переведены соответствующие производства из Западной Европы и США (со средним содержанием ртути в каждом из них 0,6-1 г).

При практическом использовании термометров значительная часть их по тем или иным причинам ежегодно выходит из строя, что не исключает поступления содержащейся в них ртути в среду обитания. Для оценки потерь ртути с вышедшими

из строя термометрами воспользуемся удельным показателем, рассчитанным для России [1]: один ежегодно выходящий из строя термометр, содержащий 2 г ртути, на 16 жителей нашей страны. В последние годы в России ежегодно использовалось (разбивалось, выходило из строя) до 9 млн термометров, содержащих (при указанных выше допущениях) не менее 18 т ртути (табл. 1).

Таблица 1 Годовой баланс ртути, поступающей в окружающую среду при использовании ртутных термометров в России

| Составляющие баланса           | Macca,<br>T | Доля,<br>% |  |  |
|--------------------------------|-------------|------------|--|--|
| Поступление в окружающую среду |             |            |  |  |
| В атмосферу                    | 1,75        | 9,7        |  |  |
| В гидросферу                   | 2,75        | 15,3       |  |  |
| В почву                        | 2,50        | 13,9       |  |  |
| Временное депонирование        |             |            |  |  |
| С отходами (на свалках)        | 5,0         | 27,8       |  |  |
| В канализационной сети         | 0,5         | 2,8        |  |  |
| С осадками сточных вод         | 4,5         | 25         |  |  |
| Рециклинг ртути                |             |            |  |  |
| Получение вторичной ртути      | 1           | 5,5        |  |  |
| Итого                          | 18          | 100        |  |  |

Общая масса ежегодно выходящих в России из строя ртутных термометров составляет 450-500 т, в которых содержится 30-40 т алюминия и 400-410 т стекла.

'E



Как следует из табл. 1, существенная часть ртути (7 т), содержащейся в использованных термометрах, относительно быстро включается в природные геохимические циклы и участвует в загрязнении среды обитания. Характерно, что практически аналогичные показатели (с учётом численности населения, количества используемых термометров и содержания в них ртути) имеются, например, для США, где ртутные термометры являются основным источником поступления ртути в твердые бытовые отходы (до 15–23 т ртути ежегодно) [2].

Таким образом, использование ртутных термометров в быту, медицине, научных исследованиях, сельском хозяйстве, промышленности неизбежно сопровождается существенной и сейчас практически не контролируемой эмиссией ртути в среду обитания. Объемы этой эмиссии не уступают и даже превосходят техногенную поставку ртути, обусловленную деятельностью многих других промышленных источников, расположенных в пределах России (табл. 2).

Значимость данного источника поступления ртути в среду обитания определяется ещё и тем, что в настоящее время в быту, в различных организациях, на промышленных предприятиях России используется значительное количество ртутных термо-

Таблица 2 Эмиссия ртути от различных видов деятельности в России

| Вид деятельности                     | Эмиссия                  | Объём,<br>т/год |
|--------------------------------------|--------------------------|-----------------|
| Сжигание каменного угля [3]          | В атмосферу              | 11,5            |
| Цветная металлургия [4]              | В атмосферу              | 7,4             |
| Производство цемента [5]             | В атмосферу              | 3,1             |
| Производство кокса [6]               | В атмосферу              | 1,3             |
| Черная металлургия [7]               | В атмосферу              | 1,9             |
| Использованные ртутные лампы [8]     | Общие потери             | 4,0             |
|                                      | Поступление<br>на свалки | 1,6             |
| Иодол оороши ю                       | Общие потери             | 18,0            |
| Использованные<br>ртутные термометры | В окружающую<br>среду    | 7,0             |

Таблица 3
Оценка количества ртутных термометров, находящихся в эксплуатации
в России, и содержащейся в них ртути

| Тип термометров<br>и сфера использования             | Количество<br>изделий,<br>млн шт. | Ртуть, т    |
|------------------------------------------------------|-----------------------------------|-------------|
| Медицинские термометры (у населения)                 | ≥ 100                             | ≥ 200       |
| Медицинские термометры (организации)                 | ≥ 7,5                             | ≥ 15        |
| Промышленные термометры: у населения на предприятиях | ~ 0,8<br>≥ 1,2                    | ≥ 8<br>> 12 |
| Итого                                                | ≥ 1,2<br>≥ 109                    | ≥ 235       |

метров, массовая замена которых на другие типы аналогичных приборов (даже при осуществлении необходимых организационнотехнических мероприятий), как показывает мировой опыт, вряд ли возможна в ближайшие годы (табл. 3). Есть все основания считать, что в нашей стране ртутные термометры будут эксплуатироваться ещё достаточно длительное время.

Приведённые выше факты определяют необходимость реализации в России системы мероприятий, которые должны обеспечить рациональное и безопасное использование ртутных термометров во всех сферах деятельности, а также учёт и сбор вышедших из строя изделий, окончательную переработку которых (с получением вторичной ртути) следует осуществлять на предприятиях, располагающих необходимыми для этих целей производственной базой и технологическими возможностями.

Как показывает мировой опыт, наиболее трудно решаемой задачей в системе обезвреживания ртутных термометров (впрочем, как и других ртутных приборов) являются их учёт, сбор, временное хранение и транспортировка. Тем не менее хорошо известно, что в настоящее время во многих странах мира внедрен или активно внедряется в практику так называемый раздельный сбор отходов потребления.

В последнее время попытки организовать раздельную систему сбора и обез-

## ОБРАЩЕНИЕ С ОТХОДАМИ

вреживания ртутьсодержащих отходов предпринимаются и в некоторых регионах России. С этой точки зрения вышедшие из строя ртутные термометры являются возможным объектом для отработки организационных аспектов такой системы как в отдельных регионах, так и в стране в целом. Организационной основой системы сбора использованных ртутных термометров вполне могут стать существующие во многих регионах станции демеркуризации, которые способны обеспечить сбор этих отходов и их безопасную транспортировку к местам утилизации.

Следует отметить, что практикующиеся ныне сбор, хранение и перевозка вышедших из строя ртутных приборов в картонной таре не исключают её загрязнения ртутью. Такая тара, по сути дела, превращается в отходы, для переработки которых нет соответствующего оборудования. Поэтому хранение и транспортировка потерявших потребительские свойства термометров должны осуществляться только в специальных (оборотных) контейнерах, например как отработанные ртутные лампы или любые другие ртутьсодержащие отходы, подлежащие демеркуризации доступными и эффективными способами.

## ЛИТЕРАТУРА

- 1. Янин Е.П. Экологические аспекты производства, использования и утилизации ртутных термометров в России//Экологическая экспертиза. 2004. № 6.
- 2. Mercury Stady Repotrt to Congress/US EPA. 1997. V. II. EPA-452/R-97-004.
- 3. Янин Е.П. Эмиссия ртути в атмосферу при сжигании каменного угля в России//Ресурсосберегающие технологии. 2006. № 3.
- 4. Янин Е.П. Эмиссия ртути в окружающую среду предприятиями цветной металлургии России//Экологическая экспертиза. 2004. № 5.
- Янин Е.П. Эмиссия ртути в окружающую среду при производстве цемента в России// Экологическая экспертиза. 2004. № 4.
- Янин Е.П. Оценка эмиссии ртути в окружающую среду при производстве кокса в России//Экологическая экспертиза. 2005. № 1.
- 7. Янин Е.П. Оценка эмиссии ртути в атмосферу российскими предприятиями черной металлургии//Экологическая экспертиза. 2004. № 5.
- 8. Янин Е.П. Ртутные лампы как источник загрязнения окружающей среды. М.: ИМГРЭ, 2005.



ООО «Агентство «Ртутная безопасность» 353309, РФ, Краснодарожий край, Абинский район, ст. Холмокая, ул. Элеваторная, 11 Тел./факс: 8 (861) 273-18-91, 273-18-81 8 (861-50) 3-32-19, 3-32-10, 3-32-59 e-mail: arb-krasnodar@rambler.ru hgsaf@mail.ru www.rtut-arb.ru

## Специальная тара



для безопасного хранения и перевозки отработанных ртутьсодержащих ламп всех типов

(в т. ч. бактерицидных, неоновых, энергосберегающих, натриевых, уф, ик и др.)

- Доставка спец. тары осуществляется за счет поставщика!
- Спец. тара соответствует санитарным правилам, что подтверждено санитарно-эпидемиологическим заключением, выданным ЦГСЭН по г. Москве
   № 77.01.30.148.П.02215.012 от 31.01.02 г. и экспертным заключением ТУ ФС Роспотребнадзора по Краснодарскому краю от 02.06.2005 г.
- Сопроводительная документация включает инструкцию о порядке сбора, хранения, транспортирования и приема ртутьсодержащих отходов на утилизацию.
- Спец. тара изготавливается на основании ТУ СТП 1-98

