Янин Е.П. Пылевые выбросы предприятий как источник загрязнения городской среды кадмием // Экология урбанизированных территорий, 2009, № 1, с. 30-35.

Кадмий и его соединения относятся к политропным ядам, оказывающим влияние на многие функции и системы живых организмов. По оценке Всемирной организации здраво-охранения, в течение XX в. потенциал техногенного загрязнения окружающей среды кадмием возрос примерно в 5 раз. В существенной мере это связано не только с увеличением применения кадмия и его соединений в промышленности, но и с тем, что этот металл в качестве примеси присутствует в различных материалах и природном сырье, использование и переработка которых сопровождаются его поступлением в среду обитания. Одним из источников поступления кадмия в среду обитания являются пылевые выбросы промышленных предприятий. Особенности распределения кадмия в промышленной пыли изучены недостаточно полно, что, отчасти, связано с отсутствием в России обязательного контроля его эмиссии с пылевыми выбросами.

На предприятиях обычно существуют два основных потока пылевых выбросов: а) организованные выбросы пыли, поступающей в атмосферу через системы газоходов и труб после очистки; б) неорганизованные выбросы пыли, поступающей во внешнюю среду через окна, двери, местную вентиляцию. С эколого-гигиенических позиций рационально различать следующие виды промышленной пыли [5]: а) технологическую пыль, которая образуется в ходе основных производственных процессов; ее количество и состав характеризуют организованный выброс предприятия; при изучении ее состава отбираются пробы пыли из газоходов и очистных установок; б) вентиляционную пыль, которая образуется при местных технологических процессах и характеризует неорганизованные пылевые выбросы; при изучении ее состава отбираются пробы пыли из вентиляционных систем цехов; в) пыль, которая осаждается в производственных помещениях и в определенной мере отражает качество производственной среды; при изучении ее состава отбираются пробы пыли (пылесметы) с различных поверхностей – эстакад, столов, подоконников и т. п.

Автором было проведено исследование распределения кадмия в пылевых выбросах предприятий г. Саранска – крупного промышленного центра России. Отбор проб промышленной пыли осуществлялся при помощи стеклянного шпателя (технологическая и вентиляционная пыль) и волосяной кисти (пылесметы) в полиэтиленовые пакеты. На каждом из обследованных предприятий отбиралась средняя проба (составленная из 7-10 частных проб)

соответствующих видов пыли (масса одной пробы – не менее 300 г). На некоторых заводах дополнительно были отобраны пробы пыли из разных цехов. Из каждой пробы после тщательного ее перемешивания отбирались аналитические навески, в которых распределение кадмия исследовалось атомно-абсорбционным методом; для извлечения его подвижных форм применялась ацетатно-аммонийная вытяжка. Было также изучено распределение кадмия в волосах работников электролампового завода и детей (возраст 5-7 лет), родители которых работают на промышленных предприятиях (т. е. в условиях систематического контакта с вредными веществами) и в непромышленных организациях (контакт с вредными веществами априори отсутствует). Волосы у рабочих электролампового завода и у детей, посещающих детские дошкольные учреждения, расположенные в различных районах г. Саранска, состригались с затылочной части на всю длину (масса пробы до 1,5 мг). Предварительная подготовка проб волос к анализу заключалась в их обработке лаурилсульфатом натрия (для снятия поверхностного загрязнения) и затем спиртоэфирной смесью (для обезжиривания) [3]. Определение кадмия в пробах волос осуществлялось атомно-абсорбционным методом.

Анализ полученных данных показал, что практически все предприятия выбрасывают в окружающую среду пыль, отличающуюся содержаниями кадмия, которые существенно превышают его уровни в верхнем горизонте фоновых почв и среднюю концентрацию в осадочных породах Русской плиты, являющихся основными природными источниками атмосферной пыли (табл. 1). Максимальные уровни кадмия характерны для технологической пыли тех предприятий, где этот металл и его соединения непосредственно используются в производстве или входят в состав применяемых материалов (например, электроламповое производство – краски, припои, люминофоры, заводы автосамосвалов и тепловозоремонтный – краски, припои, завод по производству резинотехнических изделий – пигменты, заводы силовой электроники и полупроводниковых изделий – сплавы, припои, пигменты, пластмассы). Для этих заводов типично также высокое содержание кадмия в вентиляционной пыли и в пылесметах. Повышенные концентрации кадмия установлены в вентиляционной пыли и в пылесметах целой группы предприятий (типография, заводы медпрепаратов, приборостроительный, инструментальный, кабельный, консервный, авторемонтные и автотранспортные организации), что связано с использованием здесь Cd-содержащих приборов, устройств и изделий, с процессами пайки, а также с применением сырья и материалов, в которых этот металл присутствует в качестве примеси. Относительно высокие уровни кадмия, обнаруженные в пыли завода по производству керамических изделий, явно обусловлены наличием его в качестве естественной примеси в сырье (карбонатные и силикатные породы).

Таблица 1. Кадмий в технологической (I), вентиляционной (II) пыли и пылесметах (III), мг/кг

Завод, предприятие (г. Саранск)		II	III
Электроламповый (лампы люминесцентные и накаливания)	1800	2	1700
Силовой электроники	220	15	21
Тепловозоремонтный	74	20	2,5
Механический (производство велосипедов)	5	6,8	1
Медицинских препаратов (включая заводскую типографию)	5	3	3
Источников света и электровакуумного стекла	3	3	1
Типография	3	2	6
Литейный	2	2	1
Полупроводниковых изделий	2	16	4
ВНИИ источников света (опытное производство)	1	3	60
Электровыпрямитель (полупроводниковые приборы)	28	_	11
Автосамосвалов	14	_	1
Керамик (камни керамические, кирпич полнотелый)	10	_	16
Резинотехнический	9,6	_	2
Инструментальный	3	_	23
Городская котельная (природный газ, мазут)	2	_	1
Крупнопанельного домостроения	3	1	_
Силовых преобразователей	10	_	_
Медицинского оборудования	5	_	_
Кабельный	_	40	3
Консервный	_	12,5	3
Авторемонтный	_	4	1
Теплоизоляционных материалов	_	1	2
Железобетонных конструкций	_	1	1
Пивобезалкогольных напитков	_	1	2
Приборостроительный	_	_	50
Автоколонна (обслуживание и ремонт автомашин)	_	_	12
Стройавтотранс (обслуживание и ремонт автомашин)	_	_	6
Автотранспортное (обслуживание и ремонт автомашин)		_	6
Хладокомбинат	_	_	3
Природные почвы окрестностей г. Саранска [5]	0,35		
Осадочные породы Русской плиты [2]		0,13	

Установлено, что промышленная пыль, образующаяся на одном и том же заводе, но в разных его цехах, отличается неоднородным распределением кадмия (табл. 2). Это является следствием специфики производственных процессов и операций, а также различия используемого сырья и(или) обрабатываемых материалов. При этом, что важно, в большинстве случаев в пыли, как правило, наблюдаются высокие концентрации кадмия, существенно превышающие его уровни в природных почвах и осадочных породах.

Таблица 2. Кадмий в технологической (I) и вентиляционной (II) пыли из различных цехов промышленных предприятий г. Саранска, мг/кг

Завод	Цех,		Пыль		
	производство	I	II		
Электроламповый	Люминесцентные лампы	3600	3		
	Цех № 14	73	_		
	Линия обработки доломита	2	1		
Крупнопанельного	Керамзитового гравия	0,5	_		
домостроения	Бетоносмесительный-1	3	_		
	Бетоносмесительный-2	1	_		
Тепловозоремонтный	Цех № 1	_	53		
	Цех окраски	_	27		
	Ремонтно-механический	_	1		
Механический	Заточный станок	_	27		
	Агрегатная станция	_	1		
Природные почвы окрестностей г. Саранска [6]			0,35		
Осадочные породы Русской плиты [3]			0,13		

Таким образом, все виды промышленной пыли являются источниками поступления кадмия в окружающую среду. Расчеты показывают, что в г. Саранске только в составе организованных пылевых выбросов обследованных предприятий в городскую среду поступает порядка 0,15 т/год кадмия, причем около 85% его связано с промышленной пылью электролампового завода. Эти выбросы кадмия существующими системами экологического мониторинга и санитарного контроля не учитываются и, таким образом, не включаются в отчетные сведения, ежегодно предоставляемые предприятиями. Выбросы оксида кадмия в атмосферу всей машиностроительной промышленность России в середине 1990-х гг., по данным официальной статистике, находились в пределах 0,885-1,779 т [4]. Данные по г. Саранску указывают на то, что реальные техногенные выбросы кадмия в России, если учитывать его поставку

с промышленной пылью, будут, несомненно, больше тех, которые указываются в официальных информационных источниках. Значительные количества кадмия накапливаются в уловленной очистными установками пыли. В г. Саранске, например, на обследованных предприятиях в такой пыли ежегодно концентрируется около 0,5 т кадмия. Эта пыль в основном вывозится на городскую свалку, что не исключает вероятности рассеивания содержащегося в ней металла в окружающей среде.

Морфологические особенности и петрохимический состав промышленной пыли, образующейся на предприятиях г. Саранска (наличие в ней органических и минеральных сорбентов, частиц доломита, цемента, извести, стекольной шихты, соды, древесной пыли и т. п.), свидетельствуют о том, что существенная доля кадмия может присутствовать в ней в подвижных (растворимых) формах нахождения. Например, вещественная матрица вентиляционной пыли завода по производству источников света представлена тонкими доломитовыми частицами; пыль завода медицинского оборудования характеризуются наличием частиц войлочной, текстолитовой и органической пыли, также известных своей высокой сорбционной способностью; пыль авторемонтного завода представлена смесью органической и неорганической пыли с присутствием оксидов железа. Действительно, исследованиями было установлено, что определенная доля кадмия присутствует в пыли виде подвижных соединений, причем в пыли авторемонтного завода и завода по производству источников света они резко преобладают (табл. 3).

Таблица 3. Кадмий в технологической (I) и вентиляционной (II) пыли некоторых заводов г. Саранска

Завод	Валовое содержание,		Ацетатно-аммонийная вытяжка *			
	$M\Gamma/K\Gamma$		мг/кг		Доля от вала, %	
	I	II	I	II	I	II
Авторемонтный	1	4	0,72	2,45	72	61
Источников света	_	3	_	2,78	_	93
Медоборудования	5	-	1,47	_	29	_

^{*} Данная вытяжка извлекает из подобных материалов преимущественно сорбционные, карбонатные и обменные (т. е. легкоподвижные) формы тяжелых металлов.

При наличии на промышленных предприятиях масштабных высокотемпературных процессов в составе выбрасываемой в атмосферу пыли обычно доминируют оксиды кадмия [1]. Это позволяет предположить, что в нашем случае оксиды кадмия могут присутствовать в пыли, образующейся на литейном заводе, в стекольном производстве завода источников све-

та, при некоторых технологических операциях на электроламповом и кабельном заводах, при сжигании топлива. В пыли предприятий, связанных с металлообработкой, не исключено присутствие металлического кадмия, поскольку здесь в ходе технологических процессов образуется пыль металлическая, абразивная, наждачная и т. п. В составе пылевых выбросов предприятий по производству стройматериалов и керамических изделий кадмий, судя по всему, находится преимущественно в виде изоморфной примеси в кристаллических решетках силикатных и карбонатных минералов, но не исключено также формирование CdCO₃. Следует отметить, что в условиях окружающей среды при взаимодействии с атмосферными осадками, почвенными растворами, грунтовыми водами многие соединения кадмия (в том числе, его оксиды) со временем способны включаться в геохимическую миграцию и биологический круговорот.

Поступление кадмия в городскую среду в составе пылевых выбросов и последующее осаждение пыли на подстилающую поверхность обусловливают формирование в почвах предприятий (в почвах промзон) и их окрестностей интенсивных техногенных геохимических аномалий этого металла (зон техногенного загрязнения), концентрации которого, отличаясь значительной вариацией, в целом существенно превышают его уровни в фоновых почвах (табл. 4). Показательно, что содержания кадмия (аэрозольная форма) в приземном слое атмосферного воздуха вблизи электролампового завода, в центре Саранска и в северной промзоне города в 30-100 раз превышали его фоновые концентрации [5]. Это свидетельствует о высокой степени техногенного загрязнения городской атмосферы токсичным металлом.

Таблица 4. Кадмий в почвах промзон г. Саранска, мг/кг [5]

Завод, предприятие	Среднее	Интервал	
Электроламповый	45,3	3-300	
Механический	9	1-30	
Полупроводниковых изделий	4,6	0,1-40	
Электровыпрямитель	2,2	0,5-10	
Крупнопанельного домостроения	2	0,4-4	
Типография	1,7	0,5-5	
Природные почвы окрестностей г. Саранска	0,3	0,35	

Полученные данные показывают, что на многих предприятиях кадмий является типичным поллютантом производственных помещений и с этой точки зрения представляет особую гигиеническую опасность, что усугубляется нахождением этого металла в пыли в виде рас-

творимых соединений. Известно, что длительное вдыхание воздуха с Сd-содержащей пылью вызывает у профессиональных рабочих хроническую интоксикацию, нередко приводящую к тяжелым поражениям верхних дыхательных путей, почек и к изменениям в костях. Постоянное присутствие в рабочих помещениях пыли с высокими уровнями кадмия и наличие в пределах промзон его интенсивных аномалий в почвах определяют тот факт, что обогащенная этим металлом промышленная и почвенная пыль может переноситься на одежде и обуви рабочих в места их проживания. Так, установлено, что дети промышленных рабочих, независимо от места проживания, отличаются более высокими (в среднем в 3 раза) уровнями кадмия в волосах, нежели дети работников непромышленных организаций г. Саранска, в волосах которых содержания этого металла находились в пределах физиологической нормы (табл. 5).

Таблица 5. Кадмий в волосах детей, промышленной пыли и почвах промзон г. Саранска

Место работы родителей *	Волосы **		Пыль, мг/кг	Почвы про-	
	Количе-	Среднее,		мзоны, мг/кг	
	ство проб	мкг/г		[5]	
Электротехнические и приборостроитель-	35	0,9	3-1800 ***	0,5-300	
ные заводы					
Непромышленные организации	31	0,3	0,05-2 ****	0,3-0,5	

^{*} Средние уровни кадмия в волосах рабочих цеха сборки люминесцентных ламп электролампового завода (выборка 30 человек) – 2,64 мкг/г (интервал от 0,6 до 21,4 мкг/г), в волосах рабочих других подразделений завода (15 человек) – 1,16 мкг/г (0,2-4,8 мкг/г).

Таким образом, многие производственные процессы сопровождаются образованием пыли, отличающейся повышенным содержанием кадмия. Наиболее высокие концентрации кадмия характерны для пыли тех предприятий, где этот металл и его соединения используются в технологических процессах или входят в состав применяемых материалов и сырья. В производственных помещениях практически всех обследованных заводов постоянно присутствует Cd-содержащая пыль, что не исключает поступления токсичного металла в организм рабочих, в волосах которых обнаруживаются его повышенные уровни. Заметная доля кадмия, концентрирующегося в промышленной пыли, представлена его подвижными в условиях

^{**} Физиологический уровень кадмия в волосах оценивается в 0,2-0,4 мкг/г [3].

^{***} Технологическая пыль.

^{***} Пыль из помещений (пылесметы).

окружающей среды формами нахождения. Это определяет повышенную экологотоксикологическую опасность пыли и вероятность активного преобразования связанного с ней кадмия в ходе миграции в окружающей среде. Пылевые выбросы, содержащие кадмий, играют важную роль в загрязнении городской среды. Кадмий, присутствующий в промышленной и почвенной пыли, может переноситься профессиональными рабочими (на одежде, обуви и т. д.) в жилую среду, систематическое загрязнение которой обусловливает накопление кадмия в волосах детей. Исследование содержания кадмия в промышленной пыли должно стать составной частью санитарно-гигиенического контроля, осуществляемого на предприятиях соответствующими службами.

Литература

- 1. Первунина Р.И., Малахов С.Г. Подвижность металлов, выпавших на почву в составе выбросов промышленных предприятий // Миграция загрязняющих веществ в почвах и сопредельных средах. Л.: Гидрометеоиздат, 1988. С. 171-179.
- 2. Ронов А.Б., Мигдисов А.А. Распространенность пород, минералов и химических элементов в осадочном чехле Русской плиты и ее изменение во времени // Основные направления геохимии. М.: Наука, 1995. С. 150-172.
- 3. Скрининговые методы для выявления групп повышенного риска среди рабочих, контактирующих с токсичными химическими элементами. Методические рекомендации. М.: МОНИКИ, 1989.
- 4. Шеховцов А.А., Жильцов Е.В., Чижов С.Г. Влияние отраслей экономики Российской Федерации на состояние природной среды в 1993-1995 гг. М.: Издательский центр «Метеорология и гидрология», 1997.
- 5. Янин Е.П. Электротехническая промышленность и окружающая среда (экологогеохимические аспекты). – М.: Диалог-МГУ, 1998.