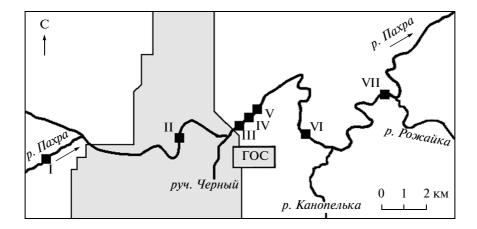
ТРАНСФОРМАЦИЯ ГРУППОВОГО СОСТАВА ОРГАНИЧЕСКОГО ВЕЩЕСТВА РУСЛОВЫХ ОТЛОЖЕНИЙ МАЛОЙ РЕКИ В УСЛОВИЯХ ТЕХНОГЕНЕЗА

© 2013 г. Е. П. Янин

Институт геохимии и аналитической химии им. В.И. Вернадского РАН
119991 ГСП-1 Москва, ул. Косыгина, 19
e-mail: yanin@geokhi.ru
Поступила в редакцию 21.11.2011 г.
Принята к печати 30.01.2012 г.

Изучен групповой состав органического вещества (OB) русловых отложений р. Пахры в природных условиях и в зоне влияния г. Подольска (Московская область). Установлено, что природный аллювий характеризуется невысоким содержанием OB ($C_{\rm opr}=0.65\%$) и преобладанием в его составе гумусовых кислот (81.8% от $C_{\rm opr}$) при незначительной доле остаточного OB (16.7%) и липидов (1.5%). Техногенные илы, формирующиеся в русле реки в зоне влияния города, отличаются высоким содержанием OB ($C_{\rm opr}=1.26-2.60\%$), в составе которого относительная доля липидов возрастает до 10—20%, остаточного OB — до 27.3—48.6%, а доля гумусовых кислот снижается до 29.6—57.1%. Наиболее резко в илах увеличиваются удельные концентрации липидов (в 6—59 раз по сравнению с природным аллювием) и остаточного OB (в 3—11 раз). Количество и своеобразие группового состава OB техногенных илов обусловлены спецификой источников питания реки осадочным материалом и особенностями среды аллювиального осадконакопления в зоне влияния промышленного города.


Ключевые слова: органическое вещество, малая река, промышленное воздействие, природный аллювий, техногенные илы.

DOI: 10.7868/S0016752513080074

Органическое вещество (ОВ), поступающее в малые реки техногенных ландшафтов с поверхностным стоком и сточными водами, играет важную роль в формировании состава современных аллювиальных отложений, концентрировании и поведении в них различных химических элементов. Анализ литературных данных показывает, что на практике обычно оценивается интенсивность накопления в речных отложениях индивидуальных органических соединений [1]. Групповой состав ОВ вещества речных отложений, особенно в условиях техногенеза, изучен слабо. В то же время именно он является фактором, во многом определяющим физико-химические условия среды аллювиального осадконакопления, направленность и интенсивность проявления в ней различных геохимических, биохимических и физических процессов [2-4]. Можно предположить, что соотношение основных групп ОВ, свойственное речным отложениям в зонах техногенного загрязнения, может быть иным, нежели в природных (фоновых) условиях. На это впервые указал В.И. Вернадский [5], отметивший, что одним из наиболее резких геохимических изменений, вносимых деятельностью человека в природные воды, является изменение состава их органической компоненты, проявляющееся не только в увеличении общего содержания ОВ, но и в преобразовании его качественной структуры. Задача настоящего исследования — установить групповой состав ОВ русловых отложений малой реки и особенности его трансформации в зоне влияния промышленного города.

РАЙОН И МЕТОДЫ ИССЛЕДОВАНИЙ

Исследования были выполнены на р. Пахре в окрестностях г. Подольска — крупного промышленного центра Московской области (рис. 1). Длина Пахры — 135 км, площадь водосбора — 2720 км²; средний многолетний годовой расход воды в районе Подольска составляет 9.95 м³/с. В природных условиях режим и водность Пахры, которая относится к восточно-европейскому типу рек с преимущественно снеговым питанием, типичны и нормальны для малых рек Центральной России [6]. В последние десятилетия в водном питании Пахры важную роль играют отводимые в нее промыш-

Рис. 1. Схема расположения участков исследования р. Пахры в окрестностях г. Подольска I–VII – участки отбора проб русловых отложений; ГОС – очистные сооружения; тоном выделена промышленно-урбанизированная территория.

ленно-бытовые сточные воды, являющиеся источником поставки в реку значительных масс специфического осадочного материала, что обусловило формирование в ее русле нового типа русловых отложений — техногенных илов [7]. Основной сброс в Пахру сточных вод, образующихся в пределах Подольска, осуществляется с городских очистных сооружений (ГОС) по руч. Черному. Источником поставки в реку техногенного осадочного материала является также поверхностный сток с освоенных территорий.

Отбор проб русловых отложений (слой 0-20 см) осуществлялся буром ТБГ-1 на следующих опорных участках р. Пахры: I — при входе в г. Подольск, II — центр города, III—VII — соответственно 2 км, 2.2 км, 2.4 км, 9 км и 15 км ниже устья руч. Черного, VIII — верховья реки (местный фон). В пределах каждого опорного участка вблизи заданной точки (в 2-3 м от уреза) отбиралось не менее 3-х частных проб (визуально схожего осадочного материала), из которых формировалась общая проба (объемом ~ 1 л). Пробы отложений высушивались на воздухе (в тени), материал каждой пробы тщательно перемешивался, просеивался через сито (1 мм) и квартовался с целью отбора навесок для последующих анализов.

Компоненты петрохимического состава отложений исследовались по стандартным методикам (сочетание гравиметрического, объемного комплексонометрического, потенциометрического, пламенно-фотометрического, фотоколориметрического методов), Ni, Cu, Zn, Mo, Ag, Cd, Pb (как индикаторы техногенного воздействия) атомно-абсорбционным методом, общее содержание органического углерода (C_{opr}) — методом И.В. Тюрина. Для последовательного извлечения из отложений основных групп ОВ использовалась следующая схема фазового анализа:

1) Спиртобензольная смесь (1:1 по объему C_2H_5OH и C_6H_6 , экстракция в аппарате Сокслета в течение 20 час. при комнатной температуре). Считается, что данная вытяжка извлекает из отложений главным образом липиды (жиры, воски, смолы) [8]. 2) Раствор пирофосфата натрия (0.1 М $Na_2P_2O_7 \cdot 10H_2O$ с добавлением 0.1 *n* NaOH, экстракция в течение 12 час, рН ~ 13; обработка навески проводилась 3-6 раз до полного осветления раствора). Данная вытяжка извлекает из отложений в основном гумусовые кислоты, связанные с кальцием и с несиликатными формами железа и алюминия [9]. Разделение гуминовых (ГК) и фульвокислот (ФК) осуществлялось по методике [10], определение органического углерода — по методу И.В. Тюрина (в модификации [11]). Количество органического углерода в нерастворимом остатке ($C_{\text{оов}}$, характеризует остаточное OB, включающее глиногумусный гумин, лигнин и, в условиях загрязнения, техногенную органику) рассчитывалось вычитанием суммы органического углерода в спиртобензольной ($C_{\text{лип}}$) и в пирофосфатной ($C_{rk} + C_{\phi k}$) вытяжках из общего содержания органического углерода (C_{opr}) в пробе. Результаты всех анализов даются на воздушносухую массу образца.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

В пределах фонового участка русло р. Пахры сложено преимущественно неплохо отсортированными песками с незначительным содержанием (0.4—0.6%) глинистых частиц. Средний (медианный) размер частиц фонового аллювия составляет ~ 0.1 мм; доля физической глины (фракции < 0.01 мм) изменяется в пределах 0.9-1.3% [12]. В зоне влияния г. Подольска, где в аллювиальном седиментогенезе участвуют значительные

Таблица 1. Химический состав русловых отложений р. Пахры

Компоненты	Участки опробования							
	VIII	I	II	III	IV	V	VI	VII
Основные, %								
SiO_2	79.39	73.64	65.54	69.47	67.97	68.04	71.52	75.61
TiO_2	0.41	0.39	0.57	0.34	0.42	0.40	0.31	0.42
Al_2O_3	4.34	6.72	6.84	6.97	6.81	6.20	5.39	4.92
$Fe_2O_3 + FeO$	2.01	2.34	3.28	2.99	3.01	3.21	2.98	2.12
MnO	0.06	0.06	0.08	0.05	0.09	0.08	0.06	0.05
MgO	0.98	0.89	1.40	0.61	0.82	0.42	0.86	0.63
CaO	4.10	4.58	6.23	4.79	5.05	5.44	4.88	4.11
Na ₂ O	0.77	0.61	0.74	0.61	0.74	0.72	0.55	0.61
K_2O	1.62	1.37	1.74	1.32	1.61	1.97	1.49	1.37
P_2O_5	0.22	0.28	0.30	0.41	0.68	0.69	0.55	0.39
H_2O^-	0.64	0.77	1.03	0.67	1.09	1.12	0.93	0.89
H_2O^+	1.57	2.37	3.70	3.58	3.69	3.98	3.24	1.61
CO_2	3.17	3.22	5.58	3.81	3.64	3.11	3.38	3.11
$\Pi\Pi\Pi^*$	1.31	3.41	3.58	3.89	4.93	4.98	3.97	3.69
Сумма	100.59	100.65	100.61	99.51	100.55	100.36	100.11	99.53
Микроэлементы, мг/кг								
Ni	21	31	38	60	80	80	50	30
Cu	29	42	70	500	500	600	300	100
Zn	50	60	75	300	300	300	200	80
Mo	0.8	1.1	1.3	1.8	4.1	3.2	2.2	1.1
Ag	0.05	0.08	0.09	3.11	5.12	4.09	3.12	1.10
Cd	0.1	0.2	0.3	4.6	5.8	6.2	2.1	1.1
Pb	23	40	70	300	400	400	300	100

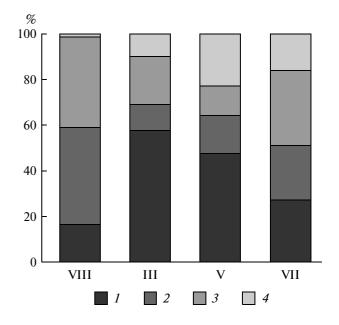
^{*} Потери при прокаливании.

массы техногенного осадочного материала, поступающего со сточными водами и поверхностным стоком с освоенных территорий, в русле Пахры развиты плохо отсортированные песчанистые, мелкоалевритовые и крупноалевритовые техногенные илы, в составе которых преобладает фракция алеврита (35.1–53.8%), доля глинистых частиц составляет 1.5–7.4%, физической глины 5.9–16.1% [12]. Медианный размер частиц, слагающих илы, изменяется в пределах 0.031–0.075 мм. Техногенные илы отличаются от фонового аллювия своеобразным петрохимическим составом и высокими концентрациями тяжелых металлов (табл. 1).

Фоновый аллювий характеризуется невысоким содержанием ОВ ($C_{\rm opr}=0.65\%$), в составе которого преобладают гумусовые кислоты (81.8% от $C_{\rm opr}$); доля остаточного ОВ невелика (15.4%), а липидов — ничтожна (1.5%). Характерным является повышенное (по сравнению с подвижными

 Φ K) содержание Γ K, что указывает на очень высокую степень гумификации OB фоновых отложений (табл. 2).

Техногенные илы отличаются от фонового аллювия существенно более высоким (в 2–4 раза) содержанием общего количества ОВ и принципиально иным соотношением (балансом) его основных групп (табл. 2, рис. 2). Наиболее резко в илах возрастают удельные концентрации остаточного ОВ (в 3–11 раз) и особенно липидов (в 6–59 раз) (табл. 3). В свою очередь, относительная доля липидов возрастает в илах до 10–20% (против 1.5% в фоновом аллювии), остаточного ОВ — до 27.3—48.6% (против 15.4%). Одновременно в техногенных илах наблюдается уменьшение относительной доли (при незначительном росте удельного содержания) гумусовых кислот (с 81.8% в фоновом аллювии до 29.6—57.1% в илах).


По мере удаления от г. Подольска в техногенных илах отмечается уменьшение общего содер-

		В % от С _{орг}					
Участок	${ m C}_{ m opr},$ в $\%$ от отложений	липиды	гумусовые кислоты			остаточное ОВ	
			сумма	ΦК	ГК	остаточное ОБ	
I	1.38	4.4	43.5	22.5	21.0	52.1	
II	1.52	6.6	50.0	34.2	15.8	43.4	
III	1.71	9.9	32.2	21.1	11.1	57.9	
IV	2.46	13.4	36.2	16.3	19.9	50.4	
V	2.60	22.6	29.6	13.1	16.5	47.7	
VI	1.65	20.0	46.7	26.7	20.0	33.3	
VII	1.26	15.9	57.1	33.3	23.8	27.0	
Среднее (II-VII)	1.87	14.7	41.9	24.1	17.9	43.3	
VIII (фон)	0.65	1.5	81.8	39.4	42.4	16.7	

Таблица 2. Групповой состав ОВ русловых отложений р. Пахры

жания ОВ (в результате снижения главным образом количества труднорастворимой органики и ГК) и увеличение удельного содержания и относительной доли ФК. Это определяет изменение типа гумуса и степени гумификации ОВ русловых отложений. Так, если фоновый аллювий, как отмечалось выше, характеризуется очень высокой степенью гумификации ОВ (как следствие его окислительного преобразования), что типично для рек и водоемов гумидной зоны [4, 13], то техногенные илы, особенно в зоне их максимального распространения (участки III-V), отличаются менее выраженной степенью гумификации ОВ, что указывает на преобладание в условиях техногенеза восстановительных процессов (табл. 4). В свою очередь, если фоновый аллювий характеризуется фульватно-гуматным типом гумуса, то техногенные илы в ближней к источнику загрязнения зоне характеризуются фульватным типом гумуса (участки II–III), ниже по течению – гуматным (участки IV-V) и затем гуматно-фульватным (участки VI-VII) типом гумуса, что, очевидно, является отражением существующей в русле пространственной дифференциации физико-химических условий и процессов осадконакопления. В частности, не исключено, что в р. Пахре в пределах ближней зоны воздействия города (участки IV и V), где в техногенных илах отношение $C_{\Phi K}/C_{\Gamma} < 1$, а в составе поглощенных оснований преобладает кальций, получает определенное развитие гуматогенез [16], т. е. образование и (в больше степени) накопление в илах (как следствие гидравлического осаждения взвеси сточных вод) наименее подвижных, устойчивых органоминеральных производных гумусовых веществ - гуматов кальция. Своеобразие состава ОВ техногенных илов и отличие последних от фонового аллювия наглядно подчеркиваются значениями геохимических коэффициентом (табл. 5). Показательно, в техно-

генных илах (в отличие от фонового аллювия и других осадочных отложений) концентрации органического углерода ($C_{\rm opr}$) существенно превышают содержание карбонатного углерода ($C_{\rm карб}$). Так, если отношение $C_{\rm карб}/C_{\rm opr}$ в осадочных отложениях фанерозоя составляет 7,5, в осадочной оболочке Земли 5.4, в осадочном слое континентальной коры 5.3, в осадках кайнозоя 2.9 [17], в фоновом аллювии 1.3, то в техногенных илах (в среднем) — 0.7. Это свидетельствует о важной роли техногенных илов в локальном геохимическом цикле органического углерода.

Рис. 2. Групповой состав OB техногенных илов (участки III, V, VII) и фонового аллювия (участок VIII) I — остаточное OB; 2 — гуминовые кислоты; 3 — фульвокислоты; 4 — липиды.

838 ЯНИН

Таблица 3. Интенсивность концентрирования OB в техногенных илах (в коэффициентах концентрации относительно содержания в фоновом аллювии)

Участок	Сорг	Липиды (С _{лип})	Гумусовые кислоты			Остаточное ОВ
Jactor			сумма (С _{гв})	$\Phi K (C_{\phi \kappa})$	$\Gamma K (C_{rk})$	(C_{oob})
I	2.1	6	1.1	1.2	1	6.5
II	2.3	10	1.4	2	0.9	6.0
III	2.6	17	1.0	1.4	0.7	9.0
IV	3.7	33	1.6	1.5	1.8	11.3
V	3.9	59	1.4	1.3	1.5	11.3
VI	2.5	33	1.4	1.7	1.2	5.0
VII	1.9	20	1.3	1.6	1.1	3.1
Среднее (II-VII)	2.8	28	1.4	1.6	1.2	7.6

Таблица 4. Тип гумуса и степень гумификации ОВ русловых отложений р. Пахры

Участок	-	Гип гумуса	Степень гумификации		
	$C_{\phi \kappa}/C_{r\kappa}$	по [14]	$(C_{rk}/C_{opr}) \times 100\%$	по [15]	
I	0.93	Фульватно-гуматный	43.5	Очень высокая	
II	0.46	Фульватный	50.0	Очень высокая	
III	0.53	Фульватный	32.2	Высокая	
IV	1.22	Гуматный	36.2	Высокая	
V	1.26	Гуматный	29.6	Средняя	
VI	0.75	Гуматно-фульватный	47.7	Очень высокая	
VII	0.71	Гуматно-фульватный	57.1	Очень высокая	
VIII (фон)	1.08 Фульватно-гуматный		81.8	Очень высокая	

Хорошо известно, что практически любой фазовый метод определения группового состава ОВ в осадочных образованиях в определенной мере условен [14, 15]. Однако в нашем случае важна не столько точная (качественная и количественная)

Таблица 5. Пространственное изменение значений геохимических коэффициентов в русловых отложениях р. Пахры

Участок	$C_{\text{карб}}/C_{\text{орг}}$	Оксиды Fe/C _{орг}	Al ₂ O ₃ /C _{opr}	CaO/C _{opr}
I	0.6	1.7	4.9	3.3
II	1.0	2.2	4.5	4.1
III	0.9	1.8	4.1	2.8
IV	0.4	1.2	2.8	2.1
V	0.3	1.2	2.4	2.1
VI	0.6	1.8	3.3	3.0
VII	0.7	1.7	3.9	3.3
Среднее (II–VII)	0.7	1.7	3.5	2.9
VIII (фон)	1.3	3.1	6.7	6.3

идентификация присутствующих в речных отложениях органических веществ, а сколько установленная и вполне закономерная тенденция резкого увеличения общего содержания и существенного изменения структуры группового состава ОВ речных отложений, формирующихся в зонах техногенного загрязнения.

Так, относительно невысокая концентрация $C_{\text{орг}}$ (0.65%) в фоновом аллювии Пахры обусловлена тем, что последний накапливается в обстановке активного гидродинамического режима, способствующего удалению из отложений органического детрита и пелитовых частиц и формированию так называемой литогенной фации русловых отложений, в составе которой доминируют песчаные фракции и кремнезем. Судя по всему, установленные содержание и структура группового состава ОВ фонового аллювия типичны для природных условий малых равнинных рек. Например, в песках (даже заиленных) русловых отмелей рек центральных районов Русской равнины содержание $C_{\text{орг}}$ изменяется в пределах 0.11-0.34% [2]. По данным [13], речные отложения гумидной зоны в среднем содержат около 1% ОВ. По оценке [18],

средняя концентрация Сорг в континентальных осадочных породах составляет 0.62%. Качественный состав ОВ руслового аллювия малых равнинных рек в природных (фоновых) условиях определяется в основном поступлением аллохтонного материала с водосбора, намного меньшую роль играет автохтонное вещество. Главными источниками ОВ, способного концентрироваться в русловых отложениях малых рек, являются почвы водосборов (основной источник гумусовых кислот) [19, 20], в существенно меньшей степени — растительный опад и продукты жизнедеятельности гидробионтов (основные источники липидов) [21]. Известно, что в составе ОВ дерново-подзолистых почв ($C_{opr} = 1.2 - 2.3\%$), развитых в бассейне р. Пахры, преобладают гумусовые кислоты (до 68-69% от суммы ОВ) [14], что, очевидно, и предопределяет их доминирование в фоновом аллювии. Показательно, что даже в донных отложениях незагрязненных пресноводных водоемов (водохранилищ, прудов, озер), где в седиментогенезе участвуют значительные массы автохтонного биогенного вещества, доля гумусовых кислот (в составе которых обычно преобладают ГК) достигает 40-70% от общей суммы ОВ [4]. В составе липидов фонового аллювия, судя по всему, доминируют устойчивые соединения (углеводороды и свободные жирные кислоты), невысокая концентрация которых является следствием незначительного их поступления в водоток и отражает процесс трансформации лабильной части ОВ в раннем диагенезе. В частности, в пахотном горизонте дерново-подзолистой почвы удельные концентрации липидов составляют около 0.1%, а в горизонте B - 0.06 - 0.07% [22], что, в нашем случае, соотносится с их невысоким содержанием в фоновом аллювии. Основу остаточного ОВ, концентрация которого в речных отложениях обычно изменяется от сотых долей процента до нескольких процентов [19], составляют, очевидно, продукты деструкции лигнина и глиногумусный гумин.

Количество и структура группового состава ОВ техногенных илов также закономерны и, в первую очередь, обусловлены спецификой источников питания р. Пахры осадочным материалом в зоне влияния г. Подольска. Показано [23], что материальной основой техногенных речных илов, формирующихся в зонах влияния промышленных городов, является осадочный материал, поступающий в водотоки с промышленно-бытовыми сточными водами, а своеобразным геохимическим аналогом этого материала и соответственно техногенных илов являются осадки сточных вод (ОСВ), образующиеся на очистных сооружениях в ходе очистки стоков. По имеющимся данным, ОСВ содержат бензольные вещества (до 50-90% от суммы OB), жиры (7-17%), альфацеллюлозу (2-12%), гемицеллюлозу (3-25%) [24], значительные количества липидов [25], а также отлича-

ются невысоким относительным содержанием гумусовых кислот (около 20% от суммы ОВ) [26]. Согласно [27], концентрации лигнина в ОСВ (на сухую массу) составляют 4.5%, целлюлозы -2%, а гуминовых кислот – 1.8%. Низкое содержание (не более 0.03%) или даже отсутствие гумусовых кислот типично для шламов производственных стоков, которые характеризуются присутствием свыше 100 других органических соединений [28]. В бытовых сточных водах доля гумусовых кислот (от суммы растворенного ОВ) значительно меньше (30.1-41.3%) [29], нежели в природных поверхностных водах (60-80%) [30]. Известно, что увеличение удельного и относительного содержания группы стойких (трудно-окисляемых) органических соединений типично для сбрасываемых с городских очистных сооружений сточных вод [31]. Например, по данным [32], в общей сумме ОВ сточных и загрязненных вод доля стойких соединений достигает 60-65%. В условиях загрязнения в техногенных илах способны накапливаться высшие жирные кислоты (например, входящие в состав синтетических поверхностно-активных веществ) и нефтепродукты (поступающие в водоток с поверхностным стоком с урбанизированной территории), скорость распада которых невелика, что обусловливает повышенное содержание в отложениях остаточного ОВ. Не исключено также формирование в илах гуматов Са, Аl, Мп и Fe, которые отличаются слабой растворимостью и высокой устойчивостью к разложению микроорганизмами. Повышенное содержание органического вещества в негидролизируемом остатке техногенных илов может быть связано с сорбцией целого ряда органических соединений на поверхности неорганических высокодисперсных фракций, количество которых в илах очень велико. Следует отметить, что имеется давнее сообщение об увеличении количества трудноокисляемых органических соединений в отложениях загрязненных водотоков [33]. Таким образом, поступающий в реки со сточными водами и поверхностным стоком с урбанизированных территорий осадочный материал характеризуется высокими содержаниям липидов и трудногидролизуемого ОВ и пониженным количеством гумусовых кислот, что, в сущности, и определяет своеобразие группового состава органического вещества техногенных илов.

ЗАКЛЮЧЕНИЕ

В природных (фоновых) условиях распределение органического вещества (ОВ) в русловых отложениях малой реки определяется главным образом механической дифференциацией поступающего аллохтонного осадочного материала и в меньшей степени наложенным процессом накопления автохтонной органики. Это обусловливает невысокое содержание ОВ в фоновом аллювии

ГЕОХИМИЯ № 9 2013

 $(C_{\text{орг}} = 0.65\%)$ и преобладание в его составе гумусовых кислот (81.8% от $C_{\text{орг}}$) при незначительной доле остаточного OB (16.7%) и липидов (1.5%). Фоновый аллювий характеризуется фульватногуматным типом OB и очень высокой степенью его гумификации, что свидетельствует о преобладании в природных условиях окислительных процессов.

Техногенные речные илы, формирующиеся в зоне влияния промышленного города, отличаются более высоким содержанием OB (C_{opr} 1.26—2.60%, среднее 1.87%), причем наиболее резко в них увеличиваются удельные концентрации липидов (в 6— 59 раз по сравнению с фоновым аллювием) и нерастворимого ОВ (в 3-11 раз). В существенно меньшей степени (в 1.3–1.6 раза) возрастает удельное содержание гумусовых кислот, в составе которых уже доминируют ФК. Илы отличаются от фонового аллювия принципиально иной структурой группового состава содержащегося в них ОВ: относительная доля липидов возрастает до 10-20%, остаточного органического вещества – до 27.3– 48.6%, а гумусовых кислот снижается до 29.6— 57.1%. В целом ОВ техногенных илов характеризуется средней и высокой степенью гумификации, фульватным и гуматным типом гумуса, что указывает на преобладание в условиях загрязнения восстановительных процессов. По мере удаления от города уменьшение общего содержания ОВ в илах происходит в основном за счет снижения в них количества гуминовых кислот и труднорастворимых органических соединений. В техногенных илах количество органического углерода заметно превышает содержание карбонатного углерода, что отличает их от фонового аллювия и других осадочных образований. Своеобразие группового состава ОВ илов обусловлено спецификой техногенных источников питания реки осадочным материалом и особенностями среды техногенного аллювиального осадконакопления.

ОВ, концентрирующееся в техногенных илах, априори определяет их важнейшие физико-химические свойства и играет важную роль в поведении многих тяжелых металлов. Высокое содержание ОВ в илах обусловливает дополнительные расходы кислорода на его окисление, что способствует формированию в речном русле анаэробных (глеевых) условий, при которых усиливается миграционная подвижность металлов и их способность к обмену между отложениями и водой. Липиды, в значительных количествах присутствующие в техногенных илах и являющиеся наиболее лабильной частью ОВ, могут способствовать формированию подвижных, геохимически активных форм металлов, а повышенное содержание трудногидролизуемого ОВ – увеличению запасов их прочносвязанных форм. Все это обусловливает значимость техногенных илов как долговременного вторичного источника загрязнения водной массы и гидробионтов.

СПИСОК ЛИТЕРАТУРЫ

- 1. Янин Е.П. Органические поллютанты в техногенных речных илах // Научные и технические аспекты охраны окружающей среды. Обзорная информация. 2006. № 5. С. 2—26.
- 2. *Лазаренко А.А.* Литология аллювия равнинных рек гумидной зоны. М.: Наука, 1964. 236 с.
- 3. *Matthess G*. The role of natural organics on water interaction with soil and rock // IAHS-AISH publ. 1984. № 150. P. 11–21.
- 4. *Никаноров А.М., Страдомская А.Г.* Химический состав органических и минеральных веществ иловых донных отложений незагрязненных водных объектов // Водные ресурсы. 2006. № 1. С. 71—77.
- Вернадский В.И. Избранные сочинения. Т. 4. Кн. 2. М.: Изд-во АН СССР. 1960. 651 с.
- Абрамович Д.И. Река Пахра как пример малых рек. М.: Изд-во АН СССР, 1946. 52 с.
- Янин Е.П. Техногенные илы в реках Московской области (геохимические особенности и экологическая оценка). М.: ИМГРЭ, 2002. 95 с.
- 8. *Кононова М.М.* Органическое вещество почвы. М.: Изд-во АН СССР, 1963. 314 с.
- 9. *Кононова М.М., Бельчикова Н.П.* Ускоренные методы определения состава гумуса минеральных почв // Почвоведение. 1961. № 10. С. 75–87.
- Пономарева В.В., Плотникова Т.А. Методика и некоторые результаты фракционирования гумуса черноземов // Почвоведение. 1968. № 11. С. 104—117.
- Цыпленков В.П. Быстрый колориметрический метод определения содержания гумуса в почвах и почвенных растворах // Почвоведение, 1963. № 10. С. 91—95.
- 12. Янин Е.П. Особенности гранулометрического состава русловых отложений малой реки в зоне влияния промышленного города // Известия вузов. Геология и разведка. 2009. № 3. С. 69—74.
- 13. *Swain F.M.* Non-marine organic geochemistry. Cambridge: Cambridge Univ. Press, 1970. 445 p.
- Александрова Л.И. Органическое вещество почвы и процессы его трансформации. Л.: Наука, 1980. 288 с.
- 15. *Орлов Д.С., Гришина Л.А*. Практикум по химии гумуса. М.: Изд-во МГУ, 1981. 272 с.
- 16. *Глазовская М.А.* Геохимия природных и техногенных ландшафтов СССР. М.: Высшая школа, 1988. 328 с.
- 17. *Ронов А.Б., Ярошевский А.А.* Новая модель химического строения земной коры // Геохимия. 1976. № 12. С. 1763—1795.
- 18. Вассоевич Н.Б. Основные закономерности, характеризующие органическое вещество современных и ископаемых осадков / Природа органического вещества современных и ископаемых осадков. М.: Наука, 1973. С. 11—59.
- 19. Артемьев В.Е. Геохимия органического вещества в системе река-море. М.: Наука, 1993. 204 с.

- 20. Pawson R.R., Lord D.R., Evans M.G., Allott T.E.H. Fluvial organic carbon flux from an eroding peatland catchment, southern Pennines, UK // Hydrol. Earh Syst. Sci. 2008. V. 12. P. 625–634.
- 21. *Breger I.A.* Geochemistry of lipids // J. Amer. Oil Chemists` Society. 1966. V. 43. № 4. P. 197–202.
- 22. Аммосова Я.М., Орлов Д.С., Садовникова Л.К. Почвенные липоиды // Природа органического вещества современных и ископаемых осадков. М.: Наука, 1973. С. 91—101.
- 23. Янин Е.П. Техногенные речные илы в зоне влияния промышленного города (формирование, состав, геохимические особенности). М.: ИМГРЭ, 2002. 100 с.
- 24. *Евилевич А.З., Евилевич М.А.* Утилизация осадков сточных вод. Л.: Стройиздат, 1988. 248 с.
- 25. Payet C., Bryselbout C., Morel J.L., Lichtfouse E. Organic geochemistry of sewage sludge. I. Lipid fractionation by thin layer chromatography // Analysis. 1999. V. 27. № 5. P. 396–398.
- Pascual J.A., García C., Hernandez T., Ayuso M. Changes in the microbial activity of arid soil amended with urban organic wastes // Biol. Fertil. Soils, 1997. V. 24. P. 429–434.

- 27. Zorpas A.A., Arapoglou D., Panagiotis K. Waste paper and clinoptilolite as a bulking material with dewatered anaerobically stabilized primary sewage sludge (DASPSS) for compost production // Waste management. 2003. V. 23. P. 27–35.
- 28. Ishikawa S., Sakazaki Y., Eguchi Y., Suetomi R., Nakamura E. Identification of chemical substances in industrial wastes and their pyrolitic decomposition products // Chemosphere. 2005. V. 59. P. 1343–1353.
- 29. Manka J., Rebhun M., Mandelbaum A., Bortinger A. Characterization of organics in secondary effluents // Environ. Sci. Technol. 1974. V. 8. P. 1017–1020.
- 30. Варшал Г.М., Кощеева И.Я., Сироткина И.С., Велю-ханова Т.К., Инцкирвели Л.Н., Замокина Н.С. Изучение органических веществ поверхностных вод и их взаимодействия с ионами металлов // Геохимия. 1979. № 4. С. 598–607.
- 31. Химия промышленных сточных вод: Пер. с англ. М.: Химия, 1983. 360 с.
- 32. Синельников В.Е. Механизм самоочищения водоемов. М.: Стройиздат, 1980. 111 с.
- 33. *Bunch R.L., Barth E.F., Ettinger M.B.* Organic materials in secondary effluent // J. Water Pollut. Control. Fed. 1961. V. 33. № 2. C. 122–126.