Дорожукова С.Л., Янин Е.П. Особенности химического состава природных вод в зоне влияния буровых амбаров Западно-Сургутского нефтяного месторождения // Экологические системы и приборы, 2006, № 9, с. 29–32.

Буровые амбары-накопители, являющиеся приемниками отходов бурения в нефтегазовых районах, представляют собой выемки в насыпном грунте, которые после окончания бурения рекультивируются путем настила бревен и последующей засыпки песком, либо только засыпкой грунтами с соседних территорий [1-4]. Объемы отходов бурения на одну скважину достаточно большие (расчетный объем одного амбара составляет 500-800 м³), а общее количество эксплуатируемых скважин в Западной Сибири уже превышает 110 тыс. шт., что определяет потенциальную опасность загрязнения водных объектов в районах размещения амбаров, особенно при их переполнении, прорыве дамб, в результате фильтрации.

Воздействие буровых амбаров на окружающую среду изучалось в районе кустовых площадок Западно-Сургутского нефтяного месторождения. Здесь на каждом амбаре-накопителе отходов разбуривалось по 6 скважин глубиной 5 м для отбора проб грунта и замера уровня грунтовых вод. Скважины располагались по двум профилям: один из которых был ориентирован по направлению преимущественного стока поверхностных и грунтовых вод, другой – в крест стоку. Из скважин с разной глубины отбирались пробы грунта. На каждой из кустовых площадок отбирались (из болот и небольших водоемов) также пробы воды. Полевые работы проводились в теплый период времени, когда уже произошло практически полное оттаивание сезонно-мерзлого слоя и большая часть поверхностных вод фильтровалась в нижележащие грунтовые воды. В грунтах стандартными методами было изучено распределение кальция, алюминия, магния, железа, марганца, ряда других тяжелых металлов, фенолов и ароматических углеводородов; в пробах поверхностных вод и в водных вытяжках из грунтов – распределение макрокомпонентов, железа и соединений азота.

Обследованные буровые амбары Западно-Сургутского месторождения (кусты 12, 132 и 18) представляют собой рекультивированные накопители отходов бурения, заполненные смесью песка и остатками бурового шлама и перекрытые смесью относительно чистого песка и почвенного материала (с сопредельной территории). В связи с засыпкой (бульдозером) остатков шлама, сопровождающейся механическим перемешиванием материала, четкая граница между слоем отходов (шлама) и песчаной покрышкой отсутствует. В разрезе скважин она обычно прослеживается в виде плавного перехода от покровного серого или светлого песка к песку голубоватому, бурому, текучему, замазученному, с запахом нефтепродуктов. Вследствие высокой влажности отложений, накопленных в амбарах, разведочные скважины в ходе их проходки относительно быстро заплы-

вали. Уровень грунтовых вод устанавливался как выше слоя остатков шлама, так и в его толще. Общая мощность вскрытых отложений составила 3-3,5 м, а мощность слоя насыпных покровных песков изменялась от 0,3 м (куст 18) до 1,6-2,6 м (куст 12). Мощность шламовых отложений варьировалась в пределах 0,4-2,7 м. Верхняя граница слоя шлама, как правило, наклоненная или деформированная, что может быть связано с оттеснением пластичного вещества при бульдозерной засыпке амбаров насыпным грунтом. Сохранение измененной формы контакта с материалом засыпки свидетельствует о слабой способности остатков бурового шлама фильтроваться через песчаные отложения и о достаточно высокой их изоляции, сдерживающей распространение поллютантов в толщу сопредельных грунтов. Результаты бурения и последующего химического анализа отобранных проб грунтов подтвердили представление о том, что промплощадки на нефтяных месторождениях являются участками, аномально обогащенными загрязняющими веществами, прежде всего, нефтепродуктами и некоторыми химическими элементами (пинк, кальций, алюминий, барий, стронций, иногда медь). Интенсивно загрязненная нефтепродуктами толща грунтов визуально фиксируется по остаткам бурового шлама, приуроченных к придонной части амбаров и имеющих мощность 0,4-2,7 м.

В табл. 1 и 2 приведена характеристика химического состава водных вытяжек из грунтов изученных буровых амбаров Западно-Сургутского месторождения. Как правило, водные вытяжки характеризуются гидрокарбонатным кальциевым или натриевым составом и минерализацией в пределах 25-64 мг/л. Закономерно выделяются пробы, представляющие собой буровой шлам из амбаров кустов № 18 и 132, в которых минерализация водных вытяжек была выше и достигала 173-409 мг/л, что вкупе с высокими содержаниями в вытяжках хлоридов и натрия свидетельствует о сохранении в шламовом слое остатков пластовых вод даже по истечении 5-10 лет после консервации амбаров. Как видно из табл. 1 и 2, только железо переходит в раствор в концентрациях многократно превышающих ПДК (предельно допустимую концентрацию) для воды рыбохозяйственных водоемов. Тем не менее уровни содержания целого ряда макрокомпонентов (особенно хлоридов, натрия, сульфатов), а также аммонийного азота и легкоокисляемой органики в водных вытяжках из грунтов нередко существенно превышают их концентрации в воде р. Оби. Это указывает на то, что амбары могут являться источниками поступления этих веществ в водные объекты.

Ароматические углеводороды содержались в водных вытяжках в количествах на порядок ниже ПДК, либо не обнаруживались. В вытяжках из отдельных проб грунтов присутствовали фенолы в концентрациях выше ПДК (в 6-20 раз). Как правило, такие уровни характерны для шлама, отличающегося повышенными содержаниями других компонентов. С одной стороны, это может свидетельствовать о слабом выносе поллютантов из толщи грунта, захороненного в амбарах. С другой стороны, в условиях избытка влаги и при хорошей дренированности песчаных отложений, из которых возводятся отсыпки амбаров, происходит активный вынос наиболее подвижных (водорастворимых) форм поллютантов.

Таблица 1. Химический состав водных вытяжек из грунтов, мг/л

Куст	h, м*	рН	M**	Cl ⁻	SO ₄ ²⁻	HCO ₃	K ⁺	Na ⁺	Ca ²⁺	Mg^{2+}
12	0,5	6,5	31,8	3,1	2,9	20,3	0,7	0,5	1,6	2,4
12	1	6,3	29,8	3,9	- ***	19,8	0,4	0,5	1,6	1,9
12	3	6,6	31,5	3,9	4,1	19,0	0,8	0,7	1,6	0,9
12	1	6,2	42,4	8,5	-	22,9	0,8	1,3	4,0	2,4
12	2,5	6,3	44,9	8,2	4,0	22,9	0,7	1,3	4,8	1,9
12	2	6,7	56,2	4,5	4,0	34,2	0,8	6	4,0	2,4
12	3	6,0	53,1	0,2	25,4	14,2	1,3	4,1	4,0	2,4
12	2	6,1	41,8	5,9	13,2	15,1	0,9	2,4	2,0	0,7
12	3	6,2	64,1	14,8	17,6	14,2	0,9	13	2,4	0,45
18	1	6,2	25,3	4,8	-	16,1	-	-	2,0	1,7
18	2	6,1	37,8	5,7	-	24,4	0,4	1,8	4,0	1,5
18	1,5	6,9	228,2	25,5	13,0	153,7	5,8	7,5	15,2	2,9
132	1	7,0	409	34,0	13,1	210,9	8,4	106	15,2	5,4
132	2	7,1	252,1	24,1	-	144	6,7	56	9,6	2,4
132	3	7,4	358,7	46,5	-	178,6	6,7	95	16,8	5,8
132	1	6,7	44,8	5,4	-	29,8	-	6,5	0,8	0,9
132	2	6,8	63,1	10,8	4,1	31,2	0,7	12,2	1,6	0,9
132	1	6,6	60,3	4,5	-	39,1	2,1	7,3	1,6	3,4
132	2	6,8	173	12,5	25,4	93,7	3,5	23,2	8,0	2,92
р. Обь	-	7	160,1	5,4	4,4	111,8	10,7		20,6	7

^{*} Здесь и далее в таблицах – глубина отбора проб.

Таблица 2. Химический состав водных вытяжек из грунтов, мг/л

Куст	h, м	рН	NO_2	NO_3	$\mathrm{NH_4}^+$	Fe _{общ}	мг O_2/π^*
12	0,5	6,5	0,01	-	0,2	0,1	2,7
12	1	6,3	0,01	-	0,2	1,35	3,7
12	3	6,6	0,03	-	0,2	0,1	2,7
12	1	6,2	0,01	-	-	2,3	10,6
12	2,5	6,3	0,18	0,2	-	0,6	8,5
12	2 3	6,7	0,18	-	-	0,1	3,7
12		6,0	0,01	-	0,2	1,3	1,1
12	2 3	6,1	0,01	-	0,2	1,3	-
12	3	6,2	0,01	0,2	-	0,6	4,8
18	1	6,2	0,03	-	-	0,7	8
18	2	6,1	0,01	-	-	0,1	8
18	1,5	6,9	-	0,25	-	4,2	33,6
132	1	7,0	-	-	-	16	49,0
132	2	7,1	-	0,25	-	9 9	33,6
132	3	7,4	-	-	0,2	9	40,5
132	1	6,7	0,01	-	-	1,4	3,7
132	2	6,8	0,18	-	-	1,4	6,93
132	1	6,6	0,01	-	-	2,3	14,4
132	2	6,8	0,03	0,25	0,5	3	8
р. Обь	-	7	-	-	0,28	-	12

^{*} Окисляемость.

Поступающие в окружающую среду с промплощадок поверхностные воды в условиях высокого увлажнения практически всегда испытывают многократное разбавление. Это обусловливает тот факт, что для большинства химических компонентов их содержания в природных поверхност-

^{**} Здесь и далее в таблицах – минерализация.
*** Здесь и далее в таблицах прочерк означает, что данные отсутствуют.

ных водах оказались ниже или были близки к чувствительности используемых химико-аналитических методов. Так, в поверхностных водах практически отсутствовали ароматические углеводороды (их следы обнаружены только в трех водных пробах, отобранных на периферии кустов 132, 12 и 18). В водных объектах, расположенных в окрестностях буровых амбаров, визу-ально не отмечено заметных скоплений нефтепродуктов на водной поверхности, обычно типичных для нефтедобывающих районов. Во всех пробах вода имела реакцию, близкую к нейтральной, а содержания макрокомпонентов и биогенных элементов в водах не превышали ПДК (табл. 3).

Таблица 3. Химический состав поверхностных вод в районе буровых амбаров, мг/ л

Место	рН	M	Cl	SO_4^{2-}	HCO ₃	$\mathbf{K}^{^{+}}$	Na ⁺	Ca ⁺	Mg^{2+}
куст 12 ^{бис} , болото	8,0	721	230,4	11,5	248,9	1,2	191	16,8	13,1
куст132, болото	7,8	302	16,3	28,4	175,7	3,8	23,8	36,9	9,7
куст 18, водоем	7,5	298	91,5	11,5	97,6	1,5	73	14,4	8,8
куст 12 ^{бис} , болото	6,9	964	417,6	2,9	239,	4,1	272	18,4	10
куст 12 ^{бис} , болото	8,0	1119	411,2	2,9	346,6	0,7	284	50,5	11,2
куст 132, болото	7,6	136	13,1	8,6	73,2	0,7	8,5	18,4	10,7
куст 132, болото	7,5	150	12,8	9	87,9	1,1	6,8	19,2	10,7
р. Обь	7	160	5,4	4,4	111,8	10	,7	20,6	7

Необходимо отметить относительно повышенную минерализацию болотных вод по периферии и в пределах площадки куста 12. Это, очевидно, обусловлено тем, что продолжительность существования данного амбара незначительна (около 2 лет), поэтому из грунтов, прежде всего, более активно выносятся легкорастворимые компоненты, т. е. хлориды натрия и кальция, источником которых служат минерализованные пластовые воды, сбрасываемые в амбар в ходе бурения. Это, в свою очередь, обусловливает в первые 2-3 года функционирования амбара возникновение ореола повышенной минерализации (до 720-1119 мг/л) поверхностных вод в непосредственной близости от площадки, который со временем неизбежно «затухает» из-за особенностей водного режима территории. Об этом, в частности, свидетельствует отсутствие зон с повышенной минерализацией поверхностных вод на периферии кустов 132 и 18.

Таким образом, буровые амбары являются участками аномально высокого содержания в толще накопленных в них грунтов нефтепродуктов и некоторых химических элементов. Наиболее загрязненной частью амбара является слой, к которому приурочены остатки бурового шлама, представляющего собой замазученную песчано-глинистую массу. При испарении с открытой поверхности летучих фракций нефтяных углеводородов в буровых амбарах остается главным образом их тяжелая фракция, не фильтрующаяся через песчаные отложения и являющаяся относительно водоупорной, что, отчасти, предопределяет относительно слабый вынос из толщи шлама водорастворимых солей и органических веществ. В целом для шламовой толщи характерно повышенное содержание водорастворимых солей – хлоридов натрия и кальция, формирующих непосредственно после рекультивации амбара своеобразный солевой ореол в его окрестностях. В зоне влияния более старых амбаров солевые ореолы, генетически связанные с накопителями и промпло-

щадкой, как правило, проявлены слабо или вообще не фиксируются, что, очевидно, обусловлено активным выносом растворимых солей в условиях влажного климата, свойственного данной территории. Буровые амбары, особенно в первые годы своего существования, являются потенциальными источниками поступления в поверхностные воды органических веществ (нефтяных углеводородов), макрокомпонентов (хлоридов, натрия, сульфатов, кальция), соединений азота, некоторых металлов (барий, цинк, медь, алюминий). С целью снижения выноса поллютантов из амбаров можно рекомендовать при их строительстве добавлять в обваловочные грунты природные и(или) искусственные сорбционные материалы.

Литература

- 1. *Дорожукова С.Л.* Эколого-геохимические особенности нефтегазодобывающих районов Тюменской области: Автореф. дис... канд. геол.-мин. наук. М., 2004. 25 с.
- 2. Дорожукова С.Л. Оценка воздействия нефтегазодобывающей промышленности Тюменской области на окружающую среду. М.: ИМГРЭ, 2004. 32 с.
- 3. Дорожукова С.Л., Янин Е.П. Экологические проблемы нефтегазодобывающих территорий (на примере Тюменской области) // Научные и технические аспекты охраны окружающей среды. Обзорная информация, 2002, № 6, с. 57-92.
- 4. *Солнцева Н.П.* Добыча нефти и геохимия природных ландшафтов. М.: Изд-во МГУ, 1998. 376 с.