Бессонов В.В., Янин Е.П. Особенности поведения ртути в технологических процессах производства люминесцентных ламп // Тяжелые металлы и радионуклиды в окружающей среде. Материалы IV международной научно-практической конференции. Семипалатинский государственный педагогический институт, 19-21 октября 2006 года. Т. 1. — Семипалатинск, 2006, с. 113—120.

Ртуть является составной частью люминесцентных ламп (ЛЛ), в которых свечение создается от электрического разряда в парах металла или в смеси газа и пара. На российских электроламповых заводах в процессе вакуумной обработки ЛЛ в них в основном вводят жидкую ртуть, что сопровождается ее технологическими потерями, обусловливает эмиссию металла в среду обитания и формирование зон загрязнения. В предлагаемой работе рассматриваются особенности поведения ртути в технологических процессах при производстве ртутных ламп на Смоленском электроламповом заводе (СЭЗ) и дается оценка ее эмиссии в окружающую среду.

В 2001 г. на СЭЗ эксплуатировалось 10 линий сборки ЛЛ. Процесс сборки ЛЛ начинается с мойки и сушки стеклянных трубок, нанесения и сушки люминофорного слоя. Трубки, изготовленные в стекольном производстве, конвейером подаются в цех сборки ЛЛ, где поступают на машины, на которых установлены сопла для мойки и сушки трубок, а также бачки с люминофорной суспензией. В последние годы люминофорную суспензию готовят на водо-растворимом полимере (на основе метилметакрилата), обеспечивающего закрепление люминофорного слоя на стенках трубки в процессе его нанесения. В дальнейшем это связующее вещество (биндер) удаляется (выжигается). Трубки, подходя к бачку, останавливаются над ним, после чего люминофорная суспензия с помощью создаваемого в трубках вакуума втягивается в них. Установленные у верхнего конца трубки фотоэлементы дают сигнал к выключению вакуума, когда суспензия поднимается до места их размещения. После этого остатки суспензии стекает обратно в бачок, а трубки продвигаются на позиции сушки люминофорного слоя. Теплый воздух (до 50-60°C) для сушки вымытых трубок подается от печей выжигания биндера, для сушки люминофорного слоя – от калориферов. Затем трубки с нанесенным и высушенным люминофором поступают на машины выжигания биндера.

Следующей операцией является заварка трубок, которая предваряется монтажом ножек и оксидированием. Для этого на особую машину подаются стеклянные тарелки, штенгели и металлические трехзвенные выводы. Выводы и штенгели заштамповываются в единое целое с тарелкой и образуют так называемую стеклянную ножку, которая перемещается в печь отжига, где постепенно остывает. Штенгель представляет собой стеклянный капилляр диаметром 5 мм, с помощью которого внутренний объем лампы соединяется с откачной системой; он также служит для введения в

лампу ртути и инертного газа. Отверстие в штенгеле имеется лишь на ножке для одного конца лампы (ножка с продутым штенгелем); другая ножка его не имеет (ножка с непродутым штенгелем). На монтажно-оксидировочном автомате в крючки никелевых частей выводов зажимаются триспиральные катоды, наносится слой оксидной суспензии, который затем высушивается, а ножки подаются к машинам заварки трубок (на газовых горелках).

Главной операцией процесса изготовления ЛЛ является их откачка на откачных полуавтоматах, в ходе которой из лампы удаляется воздух, производится прогрев трубок для удаления из стекла и люминофорного слоя загрязнений, ведется тепловая обработка электродов при пропускании по ним тока (с откачкой продуктов разложения биндера и карбонатов оксидного покрытия), осуществляется введение в ЛЛ ртути и инертного газа, активирование электродов, отпаивание ламп и установка их в конвейер, идущий к машине цоколевания. Откачка ЛЛ осуществляется с помощью вакуумных насосов. Используемая в технологическом процессе металлическая ртуть подвергается очистке (дистилляции); затем осуществляется ее заправка в дозировочные головки автоматов-дозаторов, с помощью которых производится подача металла в лампу (в виде капли определенной массы). Откачанные ЛЛ по конвейеру идут к машине цоколевания. На конвейере происходит автоматическое обламывание непродутого штенгеля; работницы (цоколевщицы), находящиеся в середине конвейера, надевают (вручную) на лампы цоколи с намазанной на них мастикой. После термической обработки цоколевочная мастика прочно связывает цоколь со стеклянной трубкой. Затем ЛЛ подаются конвейером на машины тренировки и испытания, после прохождения которых изделия, отвечающие техническим требованиям, упаковываются и поступают на склад промежуточного хранения, а попавшие в категорию забракованных – отправляются на утилизацию.

Цех сборки ЛЛ оборудован общеобменной вентиляцией, рабочие места у откачных полуавтоматов — местной приточно-вытяжной вентиляцией. В цехе работает демеркуризационная бригада, осуществляющая периодическую обработку (3%-ным раствором гипохлорита натрия) оборудования, пола, сбор разбитых штенгелей, стеклянных трубок и ламп. После обработки демеркуризационный раствор смывается струей воды по направлению к желобам ртутной канализации, оборудованной ловушками металлической ртути (большая часть этой ртути является следствием механических потерь металла в ходе сборки ламп). Извлечение ртути из ловушек осуществляется с помощью форвакуумных насосов; затем она отправляется на очистку или вторичную переработку.

Технологический процесс производства ЛЛ, рассмотренный выше, включает большой удельный вес ручного труда, характеризуется значительными потерями ртути, особенно на линиях сборки, и отличается нали-

чием неблагоприятных производственных факторов (высокие концентрации паров ртути и органических соединений, повышенная температура воздуха, шум, инфракрасное и электромагнитное излучение). Основу большинства линий сборки ламп составляет оборудование, характеризующееся практически 100%-ным сроком амортизации, что предопределяет высокий брак, прежде всего, из-за разбивания трубок и растрескивания стекла по шву заварки (20-25%). Велико также количество не прошедших технический контроль ЛЛ (до 7-9% от общего их производства).

Известно, что используемая на российских предприятиях технология изготовления ЛЛ изначально базировалась на введении в каждое изделие от 80 до 120 мг металлической ртути (без учета ее возможных потерь). Именно такое количество металла помещалось в ампульную часть дозировочной головки автомата-дозатора, причем в каждое изделие в конечном счете попадало не менее 50-80 мг ртути. В последние годы на СЭЗ были проведены мероприятия по усовершенствованию дозировочных головок, что позволило уменьшить среднюю дозу вводимой в каждую ЛЛ ртути (без учета ее потерь) в 1998-2000 гг. до 72,8-74,3 мг, в 2001 г. – до 67,7 мг, в 2002 г. – до 63,4 мг, в 2003 г. – до 52,6 мг. Из 10 эксплуатируемых на заводе линий сборки ЛЛ две отличаются меньшим удельным использованием ртути, вводимой в лампу (до 50 мг); две линии переведены на использование меркурида титана (геттеро-ртутных дозаторов), однако работают они неэффективно, с малой производительностью.

Основные потери ртути и интенсивная эмиссия ее паров в воздух рабочих помещений происходят у откачного полуавтомата, где металл вводится в лампу. Устройство, предназначенное для введения ртути в стеклянную трубку (дозировочная головка), обязано обеспечивать одновременно вакуумное уплотнение и правильную дозировку металла. В идеале капля ртути под своим весом должна поступать в лампу через капилляр штенгеля строго вертикально. На практике это происходит не во всех случаях, и капля ртути, ударяясь о стенки капилляра, частично остается в штенгеле, частично теряется. После отпайки раскаленный штенгель с остатками ртути, как и механически теряемая ртуть, поступают в демеркуризационный раствор, которым заливается пол в откачном зале. От момента отпайки и до поступления в раствор штенгель является источником интенсивного выделения паров ртути в воздух.

Пары ртути поступают в производственную среду при откачке воздуха из лампы, особенно в тех случаях, когда ЛЛ по тем или иным причинам направляется на повторные циклы откачки и введения ртути, а также при напаивании ламп, когда отключаются вакуумные насосы. На линиях сборки нередко происходит растрескивание и разбивание стеклянных трубок, что обусловливает потери ртути и выделение ее паров в воздух. Механические потери металла и эмиссия его паров в воздух происходят также в ходе дистилляции ртути, при заправке автоматов-дозаторов и обслужива-

нии дозировочных головок, при сборе отпаянных и разбитых штенгелей, разбившихся ламп, а также при техническом обслуживании вакуумных насосов и утилизации бракованных ЛЛ. Интенсивной дегазации ртути способствует повышенная температура воздуха в рабочих помещениях, достигающая на линиях сборки ламп в теплое время года 40° C (при нормативной в 18° C). В общем случае количество ртути, теряемой в ходе сборки ЛЛ, составляет от 30 до 40% от общей массы потребляемого металла.

Воздух цеха сборки ламп отличается высокими концентрациями паров ртути. Например, из 856 замеров, выполненных в течение 2001 г. на линиях сборки ламп СЭЗ, в 85% случаев фиксировались средние содержания паров ртути, превышающие максимально разовую предельно допустимую концентрацию (ПД K_{max}) в 8 раз (при вариациях от 4 до 15 ПД K_{max}) (Болохонцева и др., 2002). Наиболее высокие уровни паров ртути отмечались у откачных полуавтоматов. На последующих операциях (цоколевание, тренировка, испытание, упаковка ламп), где нет контакта с металлической ртутью, содержание ее паров в воздухе было меньше, но тем не менее находилось в пределах 2-5 ПДК_{тах}. Как правило, в других помещениях электроламповых заводов также стабильно отмечаются высокие концентрации паров ртути (табл. 1, 2). Цех сборки ЛЛ характеризуется наличием вторичных источников поступления ртути в воздух (строительные конструкции и технологическое оборудование, в том или ином количестве со временем депонирующие металл), которые в условиях повышенных температур, свойственной данному производству, постоянно эмитируют ртуть в окружающее пространство. Интенсивность загрязнения заводских помещений ртутью иллюстрируется данными о частоте возникновения у рабочих хронической ртутной интоксикации. Так, на СЭЗ с 1970 по 2001 г. у рабочих отмечено 67 случаев возникновения хронической ртутной интоксикации (в том числе в 1997-2001 гг. - 5 случаев) (Болохонцева и др., 2002). Ежегодно фиксируется до 30-90 носителей ртути, т. е. работников, у которых ртуть в повышенных концентрациях обнаруживается в моче.

В табл. З приведены исходные данные, характеризующие производство ЛЛ, использование ртути и образование отходов на СЭЗ в 1998-2002 гг. и за первый квартал 2003 г. Они послужили основой для расчетов баланса распределения и потерь ртути при производстве ламп (табл. 4). Процесс изготовления ЛЛ на СЭЗ отличается большими абсолютными и удельными потерями ртути, которые составляли в рассматриваемый период 30-35% от массы используемого металла, или 17-28 мг ртути на одну кондиционную лампу. Большая часть потерь происходит на линиях сборки ламп и приходится на механически теряемую металлическую ртуть, затем аккумулирующуюся в ловушках канализации, откуда она извлекается форвакуумными насосами и отправляется на вторичную переработку, а также на ртуть, содержащуюся в ртутной ступпе. Потери ртути со стеклобоем и сточными водами невелики.

Таблица 1. Концентрация паров ртути в воздухе помещений СЭЗ 1

таолица т. Концентрация паров ртути в п	Концентрация паров ртути				
Технологическая операция,	в воздухе рабоче				
рабочее помещение	Средняя (макси-	Средняя (преде-			
раобчес помещение	мальная), 2001 г.				
OC.	//	лы), І кв. 2003 г.			
Сборка люмине	есцентных ламп	I			
Мойка трубок, нанесение люминофора	2,8 (5)	2,1 (1,9-2,3)			
Заварка трубок	3 (7)	2,3 (2,1-2,5)			
Очистка ртути	16 (50)	23,5 (21-27)			
Откачка ламп	66,3 (150)	79,8 (37-110)			
Наладка откачного полуавтомата	54,6 (180)	79,4 (44-100)			
Обслуживание вакуумных насосов	50 (98)	нет данных			
Цоколевание ламп	43,9 (74)	58 (31-83)			
Тренировка ламп	32 (54)	49,1 (19-76)			
Испытание ламп	15 (30)	22 (8,7-32)			
Отдел технического контроля	6 (16)	нет данных			
Упаковка ламп	1,5 (2)	1,5			
Вспомогательны	е подразделения				
Утилизация бракованных ламп	37 (57)	22,3 (12-27)			
Компрессорная станция	4 (5)	0,72			
Водородная станция	2,5 (5) 0,75				
Кислородная станция	2,1 (4)	0,4			
	товые объекты	'			
Прачечная (стирка спецодежды)	6 (8)	2			
Столовая спецпитания	4,8 (9)	3,8 (2,8-5)			
Заводская поликлиника	2,3 (4) 2,3 (1,3-3)				
Нормативные и фоновые содержания	паров металлической	ртути в воздухе			
ПДК _{СС} (рабочая зона, среднесменная)	5				
ПДК _{мах} (рабочая зона, максимальная)	10				
ПДК _А (воздух населенных мест)	0,3				
Типичное фоновое содержание	0,010-0,015				

Здесь и далее первичные фактические данные по заводу, послужившие основой для расчетов и оценок, предоставлены Центрами Госсанэпиднадзора в Смоленской области и г. Смоленске.

Следует отметить, что мелкодисперсная металлическая ртуть, поступающая в ртутную канализацию (до 3,6% от массы используемого металла), заводской аналитической лабораторией в стоках не фиксируется. В то же время, в сточных водах, отводимых в городскую канализацию, визуально наблюдаются капли металлической ртути, которая в конечном счете теряется безвозвратно, что связано с недостаточно эффективной работой ртутных ловушек. Не менее 3-4% от применяемого количества ртути выбрасывается в атмосферу в основном в виде ее паров.

Таблица 2. Распределение паров ртути в воздухе у откачного автомата, СЭЗ ¹

18 декабря 20	001 г.	27 апреля		21 февраля 2	003 г.
Время суток	Hg,	Время суток	Hg,	Время суток	Hg,
	$MK\Gamma/M^3$		$MK\Gamma/M^3$		$MK\Gamma/M^3$
$9^{25}-9^{50}$	95 ± 23	10^{00} - 10^{25}	100 ± 20	8^{40} - 9^{05}	58 ± 15
-	-	10^{30} - 10^{55}	117 ± 29	9^{10} - 10^{35}	63 ± 16
-	-	11^{00} - 11^{25}	100 ± 26	9^{40} - 10^{05}	69 ± 17
-	-	11^{30} - 11^{55}	89 ± 22	10^{15} - 10^{40}	70 ± 17
12^{30} - 12^{55}	54 ± 14	12^{00} - 12^{25}	70 ± 18	10^{45} - 11^{10}	78 ± 18
-	-	12^{30} - 12^{55}	56 ± 14	11^{15} - 11^{40}	71 ± 17
-	-	13^{00} - 13^{25}	270 ± 68	12^{00} - 12^{25}	70 ± 17
-	-	13^{30} - 13^{55}	75 ± 19	12^{30} - 12^{55}	60 ± 15
14^{00} - 14^{25}	110 ± 28	14^{00} - 14^{25}	84 ± 21	13^{00} - 13^{25}	100 ± 25
-	-	14^{30} - 15^{55}	329 ± 80	-	-
Средняя	86	Средняя	129	Средняя	71
Максимальная	110	Максимальная	329	Максимальная	100
Минимальная	54	Минимальная	70	Минимальная	58

В зоне дыхания рабочих (на высоте 1-2 м от пола).

В 2001 г. на СЭЗ было использовано 2596,09 кг ртути, из которых 1765,34 кг поступили в кондиционную продукцию, а 830,75 кг составили технологические потери (68% и 32% от общего потребления соответственно). «Неучтенные потери» ртути (33,7 кг) в сущности должны быть распределены пропорционально среди других видов потерь металла. Однако с учетом имеющихся у авторов данных, распределение указанных потерь можно представить следующим образом: 1 кг ртути поступает в атмосферу в составе промышленной пыли, 3 кг металла остается в пыли, уловленной очистными установками, 13,2 кг — аккумулируется в ловушках ртутной канализации, 3,3 кг — в виде мелкодисперсной ртути теряется в канализацию, 0,006 кг сбрасывается со стоками (растворенные и взвешенные формы металла), а около 13,2 кг дегазируется в воздух помещений и (через дверные и оконные проемы, особенно в теплое время года) поступает в атмосферу, сорбируется конструкциями, одеждой и обувью рабочих и т. д. Баланс распределения потерь ртути на СЭЗ в 2001 г. приведен в табл. 5.

Большая часть потерь — это механические потери ртути, которая перехватывается ловушками ртутной канализации; значительная доля ртути извлекается из бракованных изделий; более 102 кг ртути (3,9% общего ее потребления) выбрасывается в атмосферу, почти 97 кг (3,7%) поступает в канализацию, более 226 кг (8,7%) вывозится на заводской полигон отходов (на временное хранение).

Таблица 3. Производство ЛЛ, использование ртути и образование отходов на СЭЗ в 1998-2003 гг.

	Производо	ство ламп,	Общее	Общие	Уловленная Hg,	
_	Ш	T.	потреб-	потери]	КΓ
Год	всего	доля бра-	ление	Нд, кг	фильт-	УДЛ-750 ³
		ка, %	H g, кг 1	Č,	рами ²	, ,
1998	25583100	7,2	1900,8	665,3	20,8	178,6
1999	29373300	7	2177,65	740,4	25	198,7
2000	35743500	7,1	2602,8	833	21,75	223,5
2001	38333500	7,1	2596,09	830,75	22	223,0
2002	38114100	7	2421,64	726,5	16,2	195,0
2003, І кв.	10459000	7	550	165	3,3	44,3

Продолжение табл. 3.

Tipodomine Tuon. 5.							
Год	Выбросы ртути в	Стекл	10бой ⁵	Сточные воды цеха сборки			
ТОД	атмосферу, кг 4	T	Hg, г∕т	Общий объем, м ³	Hg, мкг/л ⁶		
1998	62,4	45	1,4	110 145	1,2		
1999	75	48	1,4	88 025	0,95		
2000	87	75	1,4	118 902	0,77		
2001	88	75	1,5	156 385	1		
2002	92	79	2	166 648	1,8		
2003, І кв.	22,5	25	1,6	43 269	-		

Цех по изготовлению люминесцентных ламп пущен в эксплуатацию в 1970 г., в 1970-1975 гг. потребление ртути достигало 6 т/год.

Таким образом, в окружающую среду в конечном счете поступает более 425 кг ртути, т. е. почти 16,4% от количества металла, применяемого в технологическом процессе, при этом более 199 кг ртути (около 7,7% общего потребления), рассеивается в среде обитания и в конечном счете теряется безвозвратно. Определенные усилия по совершенствованию технологии, в первую очередь автоматов-дозаторов, в последние годы предпринимаемые на СЭЗ, способствует заметному снижению удельных потерь ртути (табл. 6).

² Фильтры общеобменной вентиляции цеха сборки (эффективность 20-25%).

³ Установка утилизации бракованных и разбитых ламп, штенгелей (ртутная ступпа с содержанием ртути 60-75% в полиэтиленовых мешках вывозится на свалку, где размещается в бункере временного хранения).

⁴ После фильтров общеобменной вентиляции.

⁵ После демеркуризации на УДЛ-750 (стеклобой вывозится на свалку).

⁶ Только растворенная в воде ртуть (мелкодисперсная металлическая ртуть, поступающая в конечном счете в канализацию, анализом не фиксируется); сточные воды сбрасываются в городскую канализацию.

Таблица 4. Баланс распределения ртути на СЭЗ (общее потребление ртути = 100%)

	Потери Нд		Количе-	Среднее	Нд, пост	упившая в ко-
	Об-	% от	ство	содержа-	нечную	продукцию
Гот	щие,	исполь-	конди-	ние Hg в	КГ	% от исполь-
Год	кг	зован-	ционных	одной	KI	зованной
	KI	ной	ламп, шт.	лампе, мг		
1998	665,3	35	23732000	52,06	1235,5	65
1999	740,4	34	27324000	52,60	1437,25	66
2000	833	32	33188000	53,33	1769,8	68
2001	830,75	32	35626000	49,55	1765,34	68
2002	726,5	30	35455000	47,81	1695,14	70
2003, І кв.	165	30	9729000	39,57	385	70

Продолжение табл. 4

Продолжен		з ртутной	Ртуть, улов-		Потери ртути			
	-		-					
	ступпе			я фильт-		бросы в	CT(очные
Гол			рам	и цеха	атм	осферу	BC	ды ¹
Год	КГ	% от ис-	КГ	% от ис-	КГ	% от ис-	КГ	% от ис-
	141	пользо- пользо-		141	пользо-	101	пользо-	
		ванной		ванной		ванной		ванной
1998	178,6	9,4	20,8	1,09	62,4	3,28	0,132	0,006
1999	198,7	9,12	25	1,15	75	3,44	0,084	0,004
2000	223,5	8,59	21,75	0,84	87	3,34	0,095	0,004
2001	223	8,59	22	0,85	88	3,39	0,156	0,006
2002	195	8,05	16,2	0,67	92	3,80	0,3	0,012
2003, І кв.	44,3	8,05	3,3	0,60	22,5	4,09	0,08	0,015

Окончание табл. 4

	Технологические потери ртути										
	Стек	Стеклобой		В канали-		в том числе					
	CTOR	3100011	зацию ²		2		Прочие	Механи	ические	Неучт	енные
Год		% от		% от	потери,		% от		%от		
	КГ	исполь	КГ	ис-	КГ ³	КГ	исполь	ΚГ	ис-		
		поль-		ПОЛЬ-			поль-		поль-		
		зован-		зован-			зован-		зован-		
		ной		ной			ной		ной		
1998	0,063	0,003	68,4	3,6	335,2	310,05	16,33	24,7	1,3		
1999	0,067	0,003	78,4	3,6	363,15	334,85	15,38	28,3	1,3		
2000	0,105	0,004	93,7	3,6	406,85	373,05	14,33	33,8	1,3		
2001	0,113	0,004	93,5	3,6	403,98	370,28	14,26	33,7	1,3		
2002	0,158	0,007	87,2	3,6	335,64	304,14	12,56	31,5	1,3		
2003,Ікв.	0,04	0,007	19,8	3,6	74,98	67,78	12,33	7,2	1,3		

Растворенные формы ртути.

² Мелкодисперсная ртуть, поступающая в канализацию (оценено расчетным способом).

³ Подавляющую часть (до 95%) составляет металлическая ртуть, которая улавливается ловушками канализации (так называемые механические потери).

Таблица 5. Баланс технологических потерь ртути на СЭЗ в 2001 г.

таолица 5. Баланс техно	JIOI MACCK		1 -	ЭЭ В 2001 1.		
		Потери Н				
		Дол	ıя, %			
Виды потерь ртути	КГ	от об-	от ис-	Примечание		
		щих по-	пользо-			
		терь	вания			
Твер	дые отхо	ды, подлех	кащие пере	работке		
Механические потери	383,48	46,16	14,77	Отправляется на пере-		
металлической ртути)	303,40	70,10	14,77	работку		
Ртуть, содержащаяся				Ступпа вывозится на за-		
в ртутной ступпе, -				водской полигон отхо-		
продукте демеркури-	223	26,84	8,59	дов и размещается в		
зации брака и загряз-				бункере временного		
ненного стеклобоя				хранения		
Фильтры очистного				Ртуть остается на		
оборудования цеха	22	2,65	0,85	фильтрах		
сборки ламп		,				
Ртуть в пыли, улов-				Пыль вывозится на		
ленной очистными	3	0,36	0,12	свалку (?)		
установками		- ,	- 7			
Твердые отходы, направляемые на свалку						
Стеклобой	0,113	0,01	0,004	Вывозится на свалку		
		,	гути в канал	•		
Сточные воды (рас-	Î	<u> </u>		Сбрасываются в город-		
творенная ртуть)	0,161	0,02	0,006	скую канализацию		
Мелкодисперсная ме-				Поступает в канализа-		
таллическая ртуть	96,8	11,65	3,73	цию, где частично ак-		
Tassiii Teekasi pTyTb	70,0	11,03	3,73	кумулируется в ртутных		
				ловушках, частично		
				уходит в городскую ка-		
				нализацию		
Foor	OODDOTH	то потори 1				
	возвратнь	ле потери ј	отути в атм 	Поступают во внешнюю		
Организованный выброс паров ртути (че-	88	10,6	3,38	среду (городскую атмо-		
1 1 1	00	10,0	3,36			
рез вентиляционную				сферу)		
систему)				Постителя		
Неорганизованный				Поступают в атмосферу		
выброс паров ртути в	12.0	1.50	0.51	через дверные и оконные		
воздух	13,2	1,59	0,51	проемы, сорбируется		
				конструкциями, одеждой		
D				и обувью рабочих и т. п.		
Ртуть в промышлен-		0.10	0.04	Поступает в атмосферу		
ной пыли	1	0,12	0,04	с организованными и		
				неорганизованными вы-		
**	020.77	100	22	бросами		
Итого	830,75	100	32			

Таблица 6. Удельные потери ртути на СЭЗ

·		я паров Hg в а		Удельные потери Нд,			
	$(до очистки выбросов)$ 1			мг/лампа			
Год		доля от ис-	на одну		меха-	в канали-	
	ΚΓ	пользуемой	лампу,	общие	ниче-	зацию	
		ртути, %	МΓ		ские		
1998	83,2	4,38	3,51	28,03	13,45	2,98	
1999	100	4,59	3,66	27,10	12,65	2,97	
2000	108,75	4,18	3,28	25,10	11,64	2,92	
2001	110	4,24	3,09	23,32	10,76	2,72	
2002	108,2	4,47	3,05	20,49	8,92	2,55	
2003, І кв.	25,8	4,69	2,65	16,96	7,25	2,11	

Количество ртути, поступающее в атмосферу, определяется эффективностью очистки выбросов.

Таким образом, на электроламповых заводах России, производящих люминесцентные и другие типы ртутных ламп, необходимо проведение полномасштабного экологического аудита и вневедомственной экологической экспертизы используемых технологий, систем очистки выбросов и стоков, утилизации образующихся отходов, а в окрестностях заводов комплекса эколого-геохимических и медико-гигиенических исследований с целью выявление уровня и масштабов загрязнения окружающей среды ртутью и другими поллютантами и их влияния на здоровье населения. Результаты таких исследований должны послужить основой для разработки плана необходимых демеркуризационных мероприятий как в пределах промышленных зон, так и в зонах влияния предприятий. Люминесцентные и другие ртутные лампы обеспечивают в нашей стране подавляющую часть световой энергии, генерируемой искусственными источниками света. В то же время потенциальный рынок ламп в Российской Федерации заполнен сейчас в лучшем случае наполовину, причем наиболее активно осваивают его различные иностранные компании, поставляя изделия ведущих (и не только) светотехнических фирм мира. Именно поэтому все отмеченные выше мероприятия в конечном счете будут иметь не только эколого-гигиенический, но и социально-экономический эффект, поскольку позволят отечественным предприятиям производить продукцию, способную составить – со всех точке зрения – конкуренцию зарубежным изделиям.

Авторы признательны В.Е. Крутилину, Р.В. Болохонцевой и Т.И. Федоровой за консультации и помощь в сборе первичной статистической информации об использовании ртути и особенностях производства ртутных ламп на СЭЗ.